
Combining Analytical and Evolutionary Inductive Programming∗

Neil Crossley and Emanuel Kitzelmann and Martin Hofmann and Ute Schmid
Faculty Information Systems and Applied Computer Science, University of Bamberg, Germany

neil.crossley@stud.uni-bamberg.de, {emanuel.kitzelmann, martin.hofmann, ute.schmid}@uni-bamberg.de

Abstract

Analytical inductive programming and evolutionary in-
ductive programming are two opposing strategies for
learning recursive programs from incomplete specifica-
tions such as input/output examples. Analytical induc-
tive programming is data-driven, namely, the minimal
recursive generalization over the positive input/output
examples is generated by recurrence detection. Evolu-
tionary inductive programming, on the other hand, is
based on searching through hypothesis space for a (re-
cursive) program which performs sufficiently well on
the given input/output examples with respect to some
measure of fitness. While analytical approaches are fast
and guarantee some characteristics of the induced pro-
gram by construction (such as minimality and termi-
nation) the class of inducable programs is restricted to
problems which can be specified by few positive exam-
ples. The scope of programs which can be generated by
evolutionary approaches is, in principle, unrestricted,
but generation times are typically high and there is no
guarantee that such a program is found for which the
fitness is optimal. We present a first study exploring
possible benefits from combining analytical and evolu-
tionary inductive programming. We use the analytical
system Igor2 to generate skeleton programs which are
used as initial hypotheses for the evolutionary system
Adate. We can show that providing such constraints
can reduce the induction time of Adate.

Introduction

Automated programming research addresses the old
dream of AI having computer systems which can au-
tomatically generate computer programs (Green et al.
1983; Biermann, Guiho, & Kodratoff 1984). Such sys-
tems would mimic the cognitive ability and expertise
of human programmers. Deductive approaches to au-
tomated programming might reflect the use of gen-
eral and specific knowledge about a programming lan-
guage and the domain of the given problem which
is available to experienced programmers. But nei-
ther proof-based approaches (Manna & Waldinger 1975;
1992) nor transformational approaches (Burstall & Dar-
lington 1977) seem to be plausible cognitive strategies.

∗Research was supported by the German Research Com-
munity (DFG), grant SCHM 1239/6-1.

Furthermore, as programming assistants such systems
can only be used by highly trained experts, since pro-
grams must be completely and correctly specified in
some formal language. Inductive approaches, on the
other hand, might reflect strategies used by human pro-
grammers with limited experience in recursive program-
ming. Common to all approaches to inductive pro-
gramming is that recursive programs are constructed
from incomplete specifications, typically samples of the
desired input/output behavior and possibly additional
constraints such as length or time efficiency. Such kind
of information can be much more easily provided by
programmers without special training and therefore, in-
ductive programming approaches are good candidates
for the development of programming assistants. There
are two distinct approaches to inductive programming:
analytical and evolutionary inductive programming.

Analytical inductive programming is data-driven and
often relies on specifications which consist only of a
small set of positive input/output examples. A recur-
sive program is learned by detecting recurrence rela-
tions in the input/output examples and generalization
over these regularities (Summers 1977; Kitzelmann &
Schmid 2006). Typically, analytical approaches are fast
and they can guarantee certain characteristics for the
constructed program such as minimality of the gener-
alization with respect to the given examples and ter-
mination. However, the class of learnable programs is
necessarily restricted to such problems which can be
specified by small sets of input/output examples. The
scope of learnable programs can be somewhat widened
by allowing the use of background knowledge (Kitzel-
mann 2008). Analytical inductive programming mim-
ics a strategy often used by human programmers with
limited experience in coding recursive programs: Ex-
plicitely write down the behavior of the desired pro-
gram for the first possible inputs, observe the regulari-
ties between succeeding examples which reflect how the
problem of size n can be solved using the solution of the
problem with size n−1 and use this information to con-
struct the recursive solution (Kahney 1989; Kruse 1982;
Pirolli & Anderson 1985).

Evolutionary inductive programming is based on
search through the hypothesis space of possible pro-



grams given some (syntactically restricted) program-
ming language. A hypothesis is returned as a solution if
it performs sufficiently well on the input/output exam-
ples with respect to some measure of fitness, typically
involving code length and time efficiency. The scope
of programs learnable with an evolutionary approach
is, in principle, unrestricted. But, generation times are
typically high and there is no guarantee that the re-
turned program is the optimal solution with respect to
the fitness function. Evolutionary inductive program-
ming follows a generate-and-test strategy which – to
some extend – might be used by inexperienced pro-
grammers when they do have a clear idea about the
desired program behavior but no clear idea about the
algorithm. A cognitively more plausible search strat-
egy is hill climbing, that is, searching for a solution by
stepwise transforming the current solution such that it
becomes more similar to the desired goal by covering
more of the positive input/output examples and having
a more desirable fitness. This idea is also incorporated
in the means-end strategy (Newell & Simon 1961) and
was shown as a strategy often exhibited in human prob-
lem solving (Greeno 1974). That is, to make evolution-
ary programming a more plausible strategy and at the
same time to make it more efficient, it would be helpful
to provide a program skeleton as initial seed which is
afterwards stepwise refined with respect to coverage of
examples and fitness.

Therefore, we propose to use analytical inductive pro-
gramming to generate initial seeds for evolutionary pro-
gramming. The combination of both approaches should
be such that if a solution can be generated by analytical
means alone, this fast and reliable approach should be
used exclusively. If the problem is out of scope for ana-
lytical programming, at least a partial solution could be
provided which then can be used as input for program
evolution. In the following, we first describe the evolu-
tionary programming system Adate and the analytical
programming system Igor2. Afterwards we will intro-
duce different strategies for the analytical generation of
program seeds with Igor2 and their incorporation in
Adate. We will report results of our first experiments
and give a short conclusion.

Evolutionary Programming with Adate

Adate (Olsson 1995; Vattekar 2006) was initially pro-
posed in the nineties and has been continually extended
ever since. To our knowledge, it is the most powerful
approach to inductive programming which is currently
available. Adate constructs programs in a subset of
the functional language ML, called ADATE-ML. The
problem specification presented to Adate consists of:
a set of data types and a set of primitive functions;
a set of sample inputs; an evaluation function; an ini-
tial declaration of the goal function f . Sample inputs
typically are input/output pairs. It is enough to give
only positive examples, but it is additionally possible to
provide negative examples. There are a number of pre-
defined evaluation functions, each using different mea-

sures for syntactic complexity and time efficiency of the
goal program. These are completed by a callback evalu-
ation function given in the problem specification which
evaluates the return value of a inferred function for a
given input example. In general, the search heuristic
is to prefer smaller and faster functions. As typical for
evolutionary approaches, there are sets of individuals
which are developed over generations such that fitter
individuals have more chances to reproduce. If no ad-
ditional knowledge is provided, in contrast to usual ap-
proaches, Adate starts with a single individual – the
empty function f .

The function declarations of all constructed program
candidates use the declaration of f , differing only in
the program body. To construct program bodies, only
the programming constructs available in ADATE-ML
can be used together with additionally data types and
primitive functions provided in the problem specifica-
tion.

The search operators are transformations used in re-
production to generate new individuals. These trans-
formations include: replacements of expressions in the
program body, abstraction of expressions by introduc-
ing a call to a newly introduced function, distributing
a function call currently outside a case expression over
all cases, and altering the number and type of func-
tion arguments by various embedding techniques. From
these ADATE constructs compound transformations,
consisting of multiple atomic transformations, depend-
ing of the current stage of the search. Through manage-
ment of an upper bound for the number of compound
transformations used to generate individuals, ADATE
can employ iterative deepening in its exploration of
the problem space. In the current version of Adate

crossover is realized by applying a compound transfor-
mation from one individual to another (Vattekar 2006).

In our experiments we used Adate with the same
set of only positive input/output examples which can
be presented to the analytical system Igor2. No data
types and function primitives beyond ADATE-ML were
used. Performance was evaluated with the predefined
measures. Correctness was evaluated by a user-defined
all-or-nothing function. The to be learned program f
was either presented with an empty body or with one of
four variants of initial seeds constructed by analytical
induction. A simple example is given in figure 1.

With only the minimum necessary background
knowledge, such as necessary data types and atomic
functions, Adate is able to find reasonable solutions
given enough time. Additional background knowledge
can reduce the required transformations to infer correct
solutions, which can also reduce search time. However,
additional background knowledge exacts deeper insights
into the problem on behalf of the problem specifier.
From a programming assistance system perspective, it
would be not convenient to expect that a human pro-
grammer could provide exactly such knowledge which
would increase the speed of generating a solution. This
would presuppose (a) that the user understands the in-



Examples (represented in Maude notation):

sorts elem list.

ops a b c d: -> elem list [ctor].

op nil: -> list [ctor].

op _,_ : elem list -> list [ctor].

eq swap(nil) = nil.

eq swap((a,nil)) = (a,nil).

eq swap((a, b, nil)) = (b, a, nil).

swap((a, b, c, nil)) = (c, b, a, nil).

swap((a, b, c, d, nil)) = (d, b, c, a, nil).

Program induced by Igor2:

1. swap( nil ) = nil.

2. swap( (X, XS) ) = (last((X,XS)), sub((X,XS))).

3. last( (X, nil) ) = X.

4. last( (X, XS) ) = last(XS).

5. sub ( (X, nil) ) = nil.

6. sub ( (X,Y,XS) ) = swap((X , sub((Y,XS)))).

Best program induced by Adate with empty seed:

fun f Xs =

case Xs of

nill => Xs

| cons( V144C, V144D) =>

case V144D of

nill => Xs

| cons( V63EC5, V63EC6 ) =>

case f( V63EC6 ) of

nill => cons( V63EC5, cons( V144C, V63EC6 ) )

| cons( V66B8B, V66B8C ) =>

cons( V66B8B, cons( V63EC5, f( cons( V144C, V66B8C ) ) ) )

Figure 1: Swap specified for Adate and Igor2 and
resulting programs

ner workings of Adate and (b) has a deep insight in the
programming problem at hand. From a cognitive per-
spective, such additional knowledge to guide Adate’s
search might be gained by a closer inspection of the
structure of the input/output examples, thereby pro-
viding Adate with a helpful initial hypothesis.

Analytical Inductive Programming with

Igor2

Igor2 (Kitzelmann 2008) – to our knowledge – is cur-
rently the most powerful system for analytical induc-
tive programming. Its scope of inducable programs
and the time efficiency of the induction algorithm com-
pares very well with classical approaches to inductive
logic programming and other approaches to inductive
programming (Hofmann, Kitzelmann, & Schmid 2008).
Igor2 continues the tradition of previous work in learn-
ing Lisp functions from examples (Summers 1977) as
the successor to Igor1 (Kitzelmann & Schmid 2006).

The system is realized in the constructor term rewrit-
ing system Maude. Therefore, all constructors speci-
fied for the data types used in the given examples are
available for program construction. Igor2 specifica-
tions consist of: a small set of positive input/output

examples, presented as equations, which have to be the
first examples with respect to the underlying data type
and a specification of the input data type. Further-
more, background knowledge for additional functions
can (but must not) be provided.

Igor2 can induce several dependent target functions
(i.e., mutual recursion) in one run. Auxiliary functions
are invented if needed. In general, a set of rules is con-
structed by generalization of the input data by intro-
ducing patterns and predicates to partition the given
examples and synthesis of expressions computing the
specified outputs. Partitioning and searching for ex-
pressions is done systematically and completely which is
tractable even for relatively complex examples because
construction of hypotheses is data-driven. An example
of a problem specification and a solution produced by
Igor2 is given in figure 1.

Considering hypotheses as equations and applying
equational logic, the analytical method assures that
only hypotheses entailing the provided example equa-
tions are generated. However, the intermediate hy-
potheses may be unfinished in that the rules contain
unbound variables in the rhs, i.e., do not represent func-
tions. The search stops, if one of the currently best
hypotheses is finished, i.e., all variables in the rhss are
bound.

Igor2’s built-in inductive bias is to prefer fewer case
distinctions, most specific patterns and fewer recursive
calls. Thus, the initial hypothesis is a single rule per
target function which is the least general generalization
of the example equations. If a rule contains unbound
variables, successor hypotheses are computed using the
following operations: (i) Partitioning of the inputs by
replacing one pattern by a set of disjoint more specific
patterns or by introducing a predicate to the righthand
side of the rule; (ii) replacing the righthand side of a
rule by a (recursive) call to a defined function (includ-
ing the target function) where finding the argument of
the function call is treated as a new induction problem,
that is, an auxiliary function is invented; (iii) replacing
subterms in the righthand side of a rule which contain
unbound variables by a call to new subprograms.

Refining a Pattern. Computing a set of more spe-
cific patterns, case (i), in order to introduce a case dis-
tinction, is done as follows: A position in the pattern
p with a variable resulting from generalising the cor-
responding subterms in the subsumed example inputs
is identified. This implies that at least two of the sub-
sumed inputs have different constructor symbols at this
position. Now all subsumed inputs are partitioned such
that all of them with the same constructor at this po-
sition belong to the same subset. Together with the
corresponding example outputs this yields a partition
of the example equations whose inputs are subsumed by
p. Now for each subset a new initial hypothesis is com-
puted, leading to one set of successor rules. Since more
than one position may be selected, different partitions
may be induced, leading to a set of successor rule-sets.



For example, let

reverse([]) = []
reverse([X]) = [X]
reverse([X,Y ]) = [Y,X]

be some examples for the reverse-function. The pattern
of the initial rule is simply a variable Q, since the exam-
ple input terms have no common root symbol. Hence,
the unique position at which the pattern contains a vari-
able and the example inputs different constructors is the
root position. The first example input consists of only
the constant [] at the root position. All remaining ex-
ample inputs have the list constructor cons as root. Put
differently, two subsets are induced by the root position,
one containing the first example, the other containing
the two remaining examples. The least general gener-
alizations of the example inputs of these two subsets
are [] and [Q|Qs] resp. which are the (more specific)
patterns of the two successor rules.

Introducing (Recursive) Function Calls and
Auxiliary Functions. In cases (ii) and (iii) help func-
tions are invented. This includes the generation of I/O-
examples from which they are induced. For case (ii)
this is done as follows: Function calls are introduced by
matching the currently considered outputs, i.e., those
outputs whose inputs match the pattern of the cur-
rently considered rule, with the outputs of any defined
function. If all current outputs match, then the rhs of
the current unfinished rule can be set to a call of the
matched defined function. The argument of the call
must map the currently considered inputs to the inputs
of the matched defined function. For case (iii), the ex-
ample inputs of the new defined function also equal the
currently considered inputs. The outputs are the corre-
sponding subterms of the currently considered outputs.

For an example of case (iii) consider the last two re-
verse examples as they have been put into one subset
in the previous section. The initial rule for these two
examples is:

reverse([Q|Qs]) = [Q2|Qs2] (1)

This rule is unfinished due two the two unbound vari-
ables in the rhs. Now the two unfinished subterms (con-
sisting of exactly the two variables) are taken as new
subproblems. This leads to two new examples sets for
two new help functions sub1 and sub2:

sub1([X]) = X sub2([X]) = []
sub1([X,Y ]) = Y sub2([X,Y ]) = [X]

The successor rule-set for the unfinished rule contains
three rules determined as follows: The original unfin-
ished rule (1) is replaced by the finished rule:

reverse([Q|Qs]) = [sub1([Q|Qs] | sub2[Q|Qs]]

And from both new example sets an initial rule is de-
rived.

Finally, as an example for case (ii), consider the ex-
ample equations for the help function sub2 and the gen-
erated unfinished initial rule:

sub2([Q|Qs] = Qs2 (2)

The example outputs, [], [X] of sub2 match the first two
example outputs of the reverse-function. That is, the
unfinished rhs Qs2 can be replaced by a (recursive) call
to the reverse-function. The argument of the call must
map the inputs [X], [X,Y ] of sub2 to the corresponding
inputs [], [X] of reverse, i.e., a new help function, sub3
is needed. This leads to the new example set:

sub3([X]) = []
sub3([X,Y ] = [X]

The successor rule-set for the unfinished rule contains
two rules determined as follows: The original unfinished
rule (2) is replaced by the finished rule:

sub2([Q|Qs] = reverse(sub3([Q|Qs]))

Additionally it contains the initial rule for sub3.

Analytically Generated Seeds for

Program Evolution

As proposed above, we want to investigate whether us-
ing Igor2 as a preprocessor for Adate can speed-up
Adate’s search for a useful program. Furthermore, it
should be the case that the induced program should
be as least as efficient as a solution found unassisted
by Adate with respect to Adate’s evaluation func-
tion. Obviously, coupling of Igor2 with Adate be-
comes only necessary in such cases where Igor2 fails
to generate a completed program. This occurs if Igor2

was presented with a too small set of examples or if ana-
lytically processing the given set of examples is not fea-
sible within the given resources of memory and time.
In these cases Igor2 terminates with an incomplete
program which still contains unbound variables in the
body of rules, namely, with missing recursive calls or
auxiliary functions.

To have full control over our initial experiments,
we only considered problems which Igor2 can solve
fully automatically. We artificially created partial solu-
tions by replacing function calls by unbound variables.
We investigated the following strategies for providing
Adate with an initial seed:

For a given ADATE-ML program of the form

fun f ( ... ) : myType = raise D1
fun main ( ... ) : myType = f ( ... )

• the function f is redefined using the partial solution
of Igor2,

• or the problem space becomes restricted from the
top-level by introducing the partial solution in the
function main.

• Any Igor2 induced auxiliary functions can also be
included: as an atomic, predefined function to be
called by f or as an inner function of f also subject
to transformations.

Experiments

We presented examples of the following problems to
Igor2:



switch(X) = Y iff the list Y can be obtained from the
list X by swapping every element on an odd index in
X with the element with the next incremental even
index.

sort(X) = Y iff the list Y is a permutation of X with
all elements sorted in increasing order.

swap (X) = Y iff the list Y is identical to the list X,
except that the first and last element are swapped in
around in Y.

lasts(X) = Y iff X is a list of lists and Y is a list
containing the last element of each list in X in the
order those lists appear in X.

shiftR(X) = Y iff the list Y is identical to the list
X, except that the last element in X is on the first
position in Y and all other elements are shifted one
position to the right.

shiftL(X) = Y iff the list Y is identical to the list
X, except that the first element in X is on the last
position in Y and all other elements are shifted one
position to the left.

insert(X, Y) = Z iff X is a list of elements sorted in
an ascending order and Z is a list of elements X + Y
sorted in an ascending order.

To generate an initial seed for Adate, typically the
righthand side of a recursive rule was replaced by an
unbound variable. For example, the solution for switch
provided by Igor2 was

switch ( [] ) = []
switch ( [X] ) = [X]
switch ( [X,Y|XS] ) = [Y, X, switch(XS)]

and the third rule was replaced by

switch ( [X,Y|XS] ) = Z.

If Igor2 induced solutions with auxiliary functions,
either the function calls on the righthand side of the
rules were made known to Adate (see section Analyt-
ically Generated Seeds for Program Evolution) or this
information was obscured by again replacing the com-
plete righthand side by a variable.

For example, for swap, Igor2 inferred one atomic
function last and inferred that the solution consists of
two functions that recursively call each other as shown
in figure 1. Adate was presented with the rule 1, 2, 5
and 6 from figure 1 where the righthand side of rule 6
was replaced with an unbound variable.

The results were ascertained by analysing the log files
produced to document an Adate run. To effectively
compare the specifications we evaluated each according
to the time taken to generate the most correct func-
tions. Because Adate infers many incorrect programs
in the search process, we restricted our focus to those
programs that:

• were tested by ADATE against the complete set of
given training examples,

• terminated for each training example, and

Table 1: Results for the best strategy (Time in seconds,
Execution see text)
Problem Type Time Execution

switch Unassisted 4.34 302
Restricted 0.47 344
Redefined 3.96 302

sort Unassisted 457.99 2487
Restricted 225.13 2849

swap Unassisted 292.05 1076
Restricted + functions 41.43 685

lasts Unassisted 260.34 987
Restricted 6.25 1116

shiftR Unassisted 8.85 239
Redefined + functions 1.79 239

shiftL Unassisted 4.17 221
Restricted 0.61 281

insert Unassisted 7.81 176
Restricted 18.37 240

• generated a correct output for each training example.

This allowed us to achieve a meaningful overview of
the performance of the specifications. While an anal-
ysis of the inferred programs with poorer performance
provides insights into the learning process, it is out-
side of our scope. Nonetheless, Adate generates a very
complete overview of inferred programs in the log files.
For the analysis of the Adate runs we needed only the
following information:

• the elapsed time since the start of the search until
the creation of the program,

• the breakdown of the results the function produced
for the examples, which in our case is the number
of results evaluated as correct, incorrect or timed-
out. Due to our accepted evaluation restrictions, we
filtered out all inferred functions which did not attain
100% correct results with the test examples.

• an Adate time evaluation of the inferred function.
This is the total execution time taken by the func-
tion for all the test examples as defined by ADATEs

built in time complexity measure. This is compare-
able to a count of all execution operations in runtime,
including method and constructor calls and returns.

Because all the specifications designed to solve the
same problem included exactly the same examples, we
could now compare the respective runs with each other.
Table 1 is a summary comparing the most efficient so-
lutions of the unassisted specifications with those of the
best specification for the same problem. Included is the
problem name, the specification type (either unassisted
or the type of assistance), the creation time of the so-
lution, the execution time necessary for the same set of
examples.1

1To run Adate only the 1995 ML compiler can
be used. The technical details are given in a report



Igor2 produced solutions with auxiliary functions
for the problems sort, swap andshiftR. In the case of
sort the best result for Adate was gained by giving no
information about the auxiliary functions.

Attention should be drawn to the uniformly quicker
inference times achieved by the assisted Adate spec-
ifications with the noteable exception of insert. Two
assisted specifications – swap and shiftR resulted in bet-
ter results that were also inferred sooner, whereas the
remaining assisted specifications produced results be-
tween 14% and 27% less efficient than their unassisted
counterparts. All in all, one could summarise, that this
relatively small comparative inefficiency is more than
compensated by the drastically reduced search time,
just over 41 times quicker in the case of lasts. That is,
our initial experiments are promising and support the
idea that search in a generate-and-test approach can be
guided by additional knowledge which can be analyti-
cally obtained from the examples.

Conclusions

In inductive programming, generate-and-test ap-
proaches and analytical, data-driven methods are dia-
metrically opposed. The first class of approaches can in
principal generate each possible program given enough
time. The second class of approaches has a limited
scope of inducable programs but achieves fast induc-
tion times and guarantees certain characteristics of the
induced programs such as minimality and termination.
We proposed to marry these two strategies hoping to
combine their respective strengths and get rid of their
specific weaknesses. First results are promising since we
could show that providing analytically generated pro-
gram skeletons mostly guides search in such a way that
performance times significantly improve.

Since different strategies showed to be most promis-
ing for different problems and since for one problem
(insert) providing an initial solution did result in longer
search time, in a next step we hope to identify problem
characteristics which allow to determine which strategy
of knowledge incorporation into Adate will be the most
successful. Furthermore, we hope either to find a fur-
ther strategy of knowledge incorporation which will re-
sult in speed-up for insert, or – in case of failure – come
up with additional criteria to determine when to re-
frain from providing constraining knowledge to Adate.
Our research will hopefully result in a programming as-
sistant which, given a set of examples, can determine
whether to use Igor2 or Adate stand alone or in com-
bination.

References

Biermann, A. W.; Guiho, G.; and Kodratoff, Y., eds.
1984. Automatic Program Construction Techniques.
New York: Macmillan.

by Neil Crossley available at http://www.cogsys.wiai.uni-
bamberg.de/teaching/ss07/p cogsys/adate-report.pdf.

Burstall, R., and Darlington, J. 1977. A transforma-
tion system for developing recursive programs. JACM
24(1):44–67.

Green, C.; Luckham, D.; Balzer, R.; Cheatham, T.;
and Rich, C. 1983. Report on a knowledge-based soft-
ware assistant. Technical Report KES.U.83.2, Kestrel
Institute, Palo Alto, CA.

Greeno, J. 1974. Hobbits and orcs: Acquisition of a
sequential concept. Cognitive Psychology 6:270–292.

Hofmann, M.; Kitzelmann, E.; and Schmid, U. 2008.
Analysis and evaluation of inductive programming sys-
tems in a higher-order framework. In Dengel, A.;
Berns, K.; Breuel, T. M.; Bomarius, F.; and Roth-
Berghofer, T. R., eds., KI 2008: Advances in Artifi-
cial Intelligence (31th Annual German Conference on
AI (KI 2008) Kaiserslauten September 2008), number
5243 in LNAI, 78–86. Berlin: Springer.

Kahney, H. 1989. What do novice programmers know
about recursion? In Soloway, E., and Spohrer, J. C.,
eds., Studying the Novice Programmer. Lawrence Erl-
baum. 209–228.

Kitzelmann, E., and Schmid, U. 2006. Inductive syn-
thesis of functional programs: An explanation based
generalization approach. Journal of Machine Learning
Research 7(Feb):429–454.

Kitzelmann, E. 2008. Analytical inductive functional
programming. In Hanus, M., ed., Pre-Proceedings
of the 18th International Symposium on Logic-Based
Program Synthesis and Transformation (LOPSTR
2008, Valencia, Spain), 166–180.

Kruse, R. 1982. On teaching recursion. ACM
SIGCCE-Bulletin 14:92–96.

Manna, Z., and Waldinger, R. 1975. Knowledge and
reasoning in program synthesis. Artificial Intelligence
6:175–208.

Manna, Z., and Waldinger, R. 1992. Fundamentals of
deductive program synthesis. IEEE Transactions on
Software Engineering 18(8):674–704.

Newell, A., and Simon, H. 1961. GPS, A program that
simulates human thought. In Billing, H., ed., Lernende
Automaten. München: Oldenbourg. 109–124.

Olsson, R. 1995. Inductive functional programming
using incremental program transformation. Artificial
Intelligence 74(1):55–83.

Pirolli, P., and Anderson, J. 1985. The role of learning
from examples in the acquisition of recursive program-
ming skills. Canadian Journal of Psychology 39:240–
272.

Summers, P. D. 1977. A methodology for LISP
program construction from examples. Journal ACM
24(1):162–175.

Vattekar, G. 2006. Adate User Manual. Technical
report, Ostfold University College.


